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ROBUSTIZING CIRCUIT OPTIMIZATION USING HUBER FUNCTIONS
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ABSTRACT

We introduce a novel approach to "robustizing" circuit
optimization using Huber functions: both two-sided and one-
sided. We compare Huber optimization with ¢;, £, and minimax
methods in the presence of faults, large and small measurement
errors, bad starting points and statistical uncertainties. We
demonstrate FET statistical modeling, multiplexer optimization,
analog fault location and data fitting.

INTRODUCTION

Engineering designers are often concerned with the
robustness of numerical optimization techniques, and rightly so,
knowing that engineering data is, with few exceptions,
contaminated by model/measurement/statistical errors.

The classical least-squares method is well known for its
vulnerability to gross errors: a few wild data points can alter the
least-squares solution significantly. The £, method is robust
against gross errors [1,2]. We will show, however, that when the
data contains many small variations, the £, solution can become
undesirably biased.

We introduce, to microwave circuit CAD, the Huber
concept [3,4]. The Huber optimization is more robust than ¢,
w.r.t. large errors, and smoother, less biased than £,. We
demonstrate the benefits of this novel approach in FET statistical
modeling, analog fault location and data fitting.

We extend the Huber concept by introducing a "one-
sided" Huber function for large-scale optimization. For large-
scale problems, the designer often attempts, by intuition, a
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"preliminary” optimization by selecting a small number of
dominant variables. We demonstrate, through multiplexer
optimization, that the one-sided Huber function can be more
effective and efficient than minimax in overcoming a bad
starting point.

THEORY

The Huber optimization problem is defined as {3,4]

minimize F(x) = Y p(f; (%)) )
x je1
where
bV ifIN<sk
] = )
kKIN - k%2 ifIN>k

x is the set of optimization variables, k is a positive constant and
fi» i =1, 2, ..., m, are error functions.

The Huber function p, is a hybrid of the £, (when |f] <
k) and the ¢, (when |f] > k) functions. By varying k, we can
alter the fraction of error functions to be treated in the least-
squares sense. The choice of k defines the threshold between
"large" and "small" errors. If k is set to a sufficiently large value,
the optimization problem (1) becomes least squares (£,). On the
other hand, as k approaches zero, p, will approach the ¢,
function.

We extend the Huber concept for design optimization
with upper and lower specifications by introducing a "one-sided"
Huber function. Negative errors are truncated, i.e., pp = 0 for f
< 0, because the corresponding design specification is satisfied.

Our exposition utilizes a dedicated and efficient Huber
optimizer [4] already implemented in the CAD system
OSA90/hope™ [5] as a standard feature.

COMPARISON OF ¢, £, AND HUBER METHODS
IN DATA FITTING

We consider the approximation of \/7 by a rational
function for 0 < ¢ < 1 [2]. Large errors are deliberately
introduced at 5 of the sample points and small variations to the
remaining data. The ¢, £, and Huber approximations are shown
in Fig. 1. Fig. 2 shows an enlarged portion for a clearer view of
the details.

As expected, the £, solution suffers significantly from the

presence of gross errors. The ¢, solution, according to the
optimality condition, is dictated by a subset of residual functions
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Fig. 2. An enlarged portion of Fig. 1.

which have zero values at the solution. In a sense, all the
nonzero residuals are treated as large errors. Such a biased ¢,
solution, as dramatized in our example, is undesirable if we wish
to model the small variations in the data.

The Huber solution provides a flexible combination of
the robustness of the £, and the unbiasedness of the £,. In fact,
the Huber solution is equivalent to an ¢, solution with the gross
errors reduced to the threshold value k.

HUBER ESTIMATOR
FOR STATISTICAL MODELING OF DEVICES

We use the Huber function as an automated robust
estimator for FET statistical modeling. Model parameters are
extracted from the measurements of 80 FETs using HarPE™ [6],
and then postprocessed to estimate the parameter statistics.

Fig. 3 shows the run chart of the extracted values of the
time-delay 7. Most of the values are between 2ps - 2.5ps, but
there are a few abnormal values due to faulty devices and/or
gross measurement errors. In our earlier work [7] using the £,
estimator, the abnormal data sets were manually excluded from
the statistical modeling process.
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Fig. 3. Run chart of the extracted model parameter r.

TABLE 1
ESTIMATED STATISTICS OF
SELECTED FET PARAMETERS

Parameter (&) $(H)  6(4) o0,(8) o, (H) o,)
Le(nH)  0.04387 0.03464 0.03429 94.6% 21.8%  17.4%
Gps(1/K) 1.840 1.820  1.839 28.6% 6.3%  4.9%
Ips(mA) 47.36  47.53  47.85 14.0% 12.7% 11.3%
7(ps) 2018 2154 2187 263% 5.8%  3.4%
Cio(pF) 03618 03658 0.3696 8.2%  4.6%  3.5%
K, 12328 1231 1233 155% 10.8% 8.7%

¢ denotes the mean and 0,4 the standard deviation.

H*denotes Huber estimates.

£, denotes £, estimates after 11 abnormal data sets are manually
excluded [7].

To estimate the mean of a parameter, we define

(@) =¢ -4, j=1,2,. N 3
where ¢j is the extracted parameter value for the jth device and
N is the total number of devices. The threshold value k for the
Huber function is chosen according to the normal spread of the
parameter values (e.g., we chose k = 0.25 for 7).

We also define

GO =Vy-@ -9 j=1,2,..N (4
where V denotes the estimated variance from which we can
calculate the standard deviation oy

Table I lists the £, and Huber estimates of the statistics
of a selected number of model parameters. We also list the
results obtained using ¢, after the abnormal data sets are
manually excluded. In comparison, the Huber estimator does not
require manual manipulation of the data and is clearly more
appropriate when there are data points which cannot be clearly
classified as normal or abnormal.



Fig. 4. The resistive mesh circuit.

APPLICATION TO ANALOG FAULT LOCATION

Analog fault location [1,8,9] can be formulated as the
Huber optimization

n+K
minimize Y7 p(f:(x)) )
x =
where
fAx) = Axy/x0, i=1,2,.,n
(6)

f,,_H(x) = ﬂ,‘(V"c - Vim), i= l, 2, vhey K

where X = [X; %, ... x,)7 is a vector of circuit parameters, x°
represents the nominal values, and Ax = x - x° represents the
deviations from the nominal. V™, .., V" are K measurements
(such as time-domain voltages and split real and imaginary parts
of complex frequency-domain voltages). VS, .., V© are the
calculated circuit responses. f; i = 1, 2, ..., K, are appropriate
multipliers.

Consider the resistive mesh network shown in Fig. 4 [1,8].
The nominal parameter values are G; = 1.0 with tolerances ¢; =
+0.05,i =1, 2, ..., 20. Nodes 4, 5, 8 and 9 are assumed to be
internal and inaccessible for measurement.

Two faults are assumed, namely G, and G;3. Table II
compares the results from the ¢ and Huber optimizations
utilizing voltage measurements under a single excitation applied
to node 1.

We tested this example for 4 other different starting
points. The Huber method correctly located the faults in all the
cases. The ¢; method was successful in 3 of the cases, but failed
in one of the cases (trapped in a different local minimum).

ONE-SIDED HUBER OPTIMIZATION FOR
CIRCUIT DESIGN

In a large-scale design problem, we often wish to
optimize a small number of dominant variables in order to obtain
a good starting point for the full-scale optimization.

Consider a 5-channel 12 GHz waveguide manifold
multiplexer [10].
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TABLE 11
FAULT LOCATION OF THE RESISTIVE MESH CIRCUIT

Percentage Deviation

Element Nominal Actual
Value Value Actual ¢ Huber
G, 1.0 0.98 -2.0 0.00 -0.11
G, 1.0 0.50 -50.0%  -48.89 -47.28
Gy 1.0 1.04 4.0 0.00 -2.46
G, 1.0 0.97 -3.0 0.00 -1.18
Gy 1.0 0.95 -5.0 -2.70 -3.16
Gy 1.0 0.99 -1.0 0.00 -0.06
G, 1.0 1.02 2.0 0.00 -0.19
Gy i.0 1.05 5.0 0.00 -0.41
G, 1.0 1.02 2.0 2.41 3.75
Gy 1.0 0.98 -2.0 0.00 0.39
Gy, 1.0 1.04 4,0 0.00 -0.37
Go 1.0 1.01 1.0 2.73 1.32
Gy 1.0 0.99 -1.0 0.00 -0.26
Gy 1.0 0.98 -2.0 0.00 -0.50
Gis 1.0 1.02 2.0 0.00 -0.05
G 10 0.96 -4.0 -3.36 -2.67
Gy 1.0 1.02 2.0 0.00 -0.61
Gig 1.0 0.50 -50.0* -50.09 ~-47.33
Gy 1.0 0.98 -2.0 -1.41 -3.81
Gy 1.0 0.96 -4.0 -4.40 -4.72
* Faults

The responses before optimization are shown in Fig. 5.
From a total of 75 optimizable variables, we first select 10
dominant variables including spacings and the channel input
transformer ratios. The minimax solution with these variables is
shown in Fig. 6 and the one-sided Huber solution is shown in
Fig. 7. The worst-case errors in these two figures are similar.

Since the worst-case errors cannot be further reduced
with only 10 variables, the minimax optimizer sees no point in
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Fig. 5. Multiplexer responses at the starting point, showing the
common port return loss ( ) and the individual
channel insertion losses (------ ).
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Fig. 6. Multiplexer responses after minimax optimization with 10
variables: spacings and channel input transformer ratios;
the common port return loss ( ) and the individual
channel insertion losses (------ ). This result hardly
improved upon the starting point shown in Fig. 5.
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Fig. 7. Multiplexer responses after one-sided Huber optimization
with 10 variables: spacings and channel input transformer

ratios; the common port return loss ( ) and the
individual channel insertion losses (------ ). This result
is significantly better than the minimax solution of Fig.

6.

spending effort elsewhere. Using the one-sided Huber function,
however, we were able to obtain a good starting point for the
subsequent full-scale minimax optimization, which results in the
multiplexer responses shown in Fig. 8.

CONCLUSIONS

We have introduced the concept and some applications of
the Huber method to microwave circuit CAD. This novel
concept is consistent with practical engineering intuition and will
have a far-reaching and profound impact on modeling, design,
design validation, fault diagnosis and statistical processing of
circuits and devices. We have presented strong evidence in a
number of application areas, and without doubt we will find the
Huber optimization of significant benefit in other areas as well.
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return loss ( ) and the individual channel insertion
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