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ABSTRACT

We introduce a novel approach to “robustizing” circuit
optimization using Huber functions both two-sided and one-
sided. We compare Huber optimization with .?l, ~ and minimax
methods in the presence of faults, large and small measurement
errors, bad starting points and statistical uncertainties. We
demonstrate FET statistical modeling, multiplexer optimization,
analog fault location and data fitting.

INTRODUCTION

Engineering designers are often concerned with the
robustness of numerical optimization techniques, and rightly so,
knowing that engineering data is, with few exceptions,
contaminated by model/measurement/statistical errors.

The classical least-squares method is well known for its
vulnerability to gross errorx a few wild data points can alter the
least-squares solution significantly. The tl method is robust
against gross errors [1,2]. We will show, however, that when the
data contains many small variations, the tl solution can become
undesirably biased.

We introduce, to microwave circuit CAD, the Huber
concept [3,4]. The Huber optimization is more robust than ~
w.r.t. large errors, and smoother, less biased than tl. We
demonstrate the benefits of this novel approach in FET statistical
modeling, analog fault location and data fitting.

We extend the Huber concept by introducing a “one-
sided” Huber function for large-scale optimization. For large-
scale problems, the designer often attempts, by intuition, a
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“preliminary” optimization by selecting a small number of
dominant variables. We demonstrate, through multiplexer
optimization, that the one-sided Huber function can be more
effective and efficient than minimax in overcoming a bad
starting point.

THEORY

The Huber optimization problem is defined as [3,4]

minimize F(x) s ~ pk(~ (X))
x j=l

(1)

where

[

f’/2 if 1)1 s k
Pk(f) “ (2)

klfl - k2/2 ij 1,~ > k

x is the set of optimization variables, k is a positive constant and
jtij=l,2 , .... m, are error functions.

The Huber fu,nction pk is a hybrid of the ~ (when 1A s
k) and the tl (when I/l > k) functions. Ely varying k, we can
alter the fraction of error functions to be treated in the least-
squares sense. The choice of k defines tlhe threshold between
“large” and “small” errors. If k is set to a sufficiently large value,
the optimization problem (1) becomes least squares (Q. On the
other hand, as k approaches zero, pk will approach the tl
function.

We extend thle Huber concept for design optimization
with upper and lower specifications by introducing a “one-sided”
Huber function. Negative errors are truncated, i.e., pk = O for ~
s O, because the corresponding design spe,:ification is satisfied.

Our exposition utilizes a dedicated and efficient Huber

m

optimizer [4] already implemented in the CAD system .
0SA90/hopew [5] as a standard feature.

COMPARISON OF tl, tlz AND HUE\ER METHODS
IN DATA FITTING

We consider the approximation (of K by a rational
function for O S t S 1 [2]. Large errors are deliberately
introduced at 5 of the sample points and small variations to the
remaining data. The tl, ~ and Huber approximations are shown

in Fig. 1. Fig. 2 shows an enlarged portion for a clearer view of
the details.

As expected, the t2 solution suffers significantly from the
presence of gross errors. The tl solution, according to the
optimality condition, is dictated by a subset of residual functions
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Fig. 1. 11, ~ and Huber solutions for data fitting in the Presence
of errors.
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Fig. 3. Run chart of the extracted model parameter r.
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TABLE I
ESTIMATED STATISTICS OF

SELECTED FET PARAMETERS

L~nH) 0.04387 0.03464 0.03429 94.6% 21.8% 17.4%
Gm. (1/Kfl) 1.840 1.820 1.839 28.6% 6.30/6 4.9%. . . . .
ID~~mA) 47.36 47.53 47,85 14.0% 12.7V0 11.3~o

7(PS) 2.018 2.154 2.187 26.3% 5.8% 3.4%

CIO(PF) 0.3618 0.3658 0.3696 8.2% 4.6% 3.5%
K1 1.2328 1.231 1.233 15.5~o 10.8~0 8.7%

,

T

Fig. 2. An enlarged portion of Fig. 1.

which have zero values at the solution. In a sense, all the
nonzero residuals are treated as large errors. Such a biased tl
solution, as dramatized in our example, is undesirable if we wish
to model the small variations in the data.

The Huber solution provides a flexible combination of
the robustness of the f!l and the unbiasedness of the ~. In fact,
the Huber solution is equivalent to an ~ solution with the gross
errors reduced to the threshold value k.

HUBER ESTIMATOR
FOR STATISTICAL MODELING OF DEVICES

We use the Huber function as an automated robust
estimator for FET statistical modeling. Model parameters are
extracted from the measurements of 80 FETs using HarPE”’ [6],
and then postprocessed to estimate the parameter statistics.

Fig. 3 shows the run chart of the extracted values of the
time-delay r. Most of the values are between 2PS - 2.5Ps, but
there are a few abnormal values due to faulty devices and/or
gross measurement errors. In our earIier work [7] using the ~
estimator, the abnormal data sets were manually excluded from
the statistical modeling process.

# denotes the mean and o+ the standard deviation.
H*denotes Huber estimates.
% denotes % estimates after 11 abnormal data sets are manually
excluded [7].

To estimate the mean of a parameter, we define

where ~J is the extracted parameter value for the jth device and
N is the total number of devices. The threshold value k for the
Huber function is chosen according to the normal spread of the
parameter values (e.g., we chose k = 0.25 for r).

We also define

j(J’j) = ~ -(d -i)’, j = 1, 2, ...> N (4)

where V’ denotes the estimated variance from which we can
calculate the standard deviation U+.

Table I lists the tz and Huber estimates of the statistics
of a selected number of model parameters. We also ‘list the
results obtained using ~ after the abnormal data sets are

manually excluded. In comparison, the Huber estimator does not
require manual manipulation of the data and is clearly more
appropriate when there are data points which cannot be clearly
classified as normal or abnormal.
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TABLE II
FAULT LOCATION OF THE RESISTIVE MESH CIRCUIT

Fig. 4. The resistive mesh circuit.

APPLICATION TO ANALOG FAULT LOCATION

Analog fault location [1,8,9] can be formulated as the
Huber optimization

n ●K

minimize ~ pk(~ (x))
x j=l

(5)

where

f~x) ~ Axi/x~, i = 1, 2, .... n
(6)

f“+(x) ~ PWt - ~im), i = 1,2, -, K

where x = [xl X2 ... xn]T is a vector of circuit parameters, x“
represents the nominal values, and Ax a x - X“ represents the
deviations from the nominal. Vim, .... VKm are K measurements
(such as time-domain voltages and split real and imaginary parts
of complex frequency-domain voltages). Vlc, .. .. VKC are the
calculated circuit responses. ~i, i = 1, 2, . ... K, are appropriate
multipliers.

Consider the resistive mesh network shown in Fig. 4 [ 1,8].
The nominal parameter values are Gi = 1.0 with tolerances ~i =
fO.05, i = 1, 2, .... 20. Nodes 4, 5, 8 and 9 are assumed to be
internal and inaccessible for measurement.

Two faults are assumed, namely G2 and G18. Table II
compares the results from the L1 and Huber optimizations
utilizing voltage measurements under a single excitation applied
to node 1.

We tested this example for 4 other different starting
points. The Huber method correctly located the faults in all the
cases. The tl method was successful in 3 of the cases, but failed
in one of the cases (trapped in a different local minimum).

ONE-SIDED HUBER OPTIMIZATION FOR
CIRCUIT DESIGN

In a large-scale design problem, we often wish to
optimize a small number of dominant variables in order to obtain
a good starting point for the full-scale optimization.

Consider a 5-channel 12 GHz waveguide manifold
multiplexer [10].

Percentage Deviation

Element Nominal Actual —
Value Value Actual $ Huber

Cl 1.0
G2 1.0
G3 1.0
Cd 1.0
G5 1.0
Ge 1.0
G7 1.0
G8 1.0
Gg 1.0

GIO 1.0
Gll 1.0

Glz 1.0

G13 1.0
G 1.0
G: 1.0

G16 1.0

G17 1.0

G18 1.0
G 1.0
G: 1.0

* Faults

0.98
0.50
1.04
0.97
0.95
0.99
1.02
1.05
1.02
0.98
1.04
1.01
0.99
0.98
1.02
0.96
1.02
0.50
0.98
0.96

.—

-2.0
-50.0*

4.0
-3.0
-5.0
-1.0
2.0
5.0
2.0
-2.0
4.0
1.0

-1.0
-2.0
2.0
-4.0
2.0

-50.0*
-2.0
-4.0

0.00 -0.11
-48.89 -47.28

0.00 -2.46
0.00 -1.18

-2.70 -3.16
0.00 -0.06
0.00 -0.19
0.00 -0.41
2.41 3.75
0.00 0.39
0.00 -0.37
2.73 1.32
0.00 -0.26
0.00 -0.50
0.00 -0.05

-3.36 -2.67
0.00 -0.61

-50.09 -47.33
-1.41 -3.81
-4.40 -4.72

The responses before optimization are shown in Fig. 5.
From a total of 75 c)ptimizable variables, we first select 10
dominant variables including spacings andl the channel input
transformer ratios. The minimax solution with these variables is
shown in Fig. 6 and the one-sided Huber solution is shown in
Fig. 7. The worst-case errors in these two figures are similar.

Since the worst-case errors cannot be further reduced
with only 10 variables, the minimax optimizer sees no point in

Fig. 5,
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Multiplexer responses at the starting point, showing the
common port return loss (—) and the individual
channel insertion losses (------).
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Fig. 6. Multiplexer responses after minimax optimization with 10
variablex spacings and channel input transformer ratios;
the common port return loss (—) and the individual
channel insertion losses (------). This result hardly
improved upon the starting point shown in Fig. 5.
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Fig. 7. Multiplexer responses after one-sided Huber optimization
with 10 variables: spacings and channel input transformer
ratios; the common port return loss (— ) and the
individual channel insertion losses (------). This result
is signitlcantly better than the minimax solution of Fig.
6.

spending effort elsewhere. Using the one-sided Huber function,
however, we were able to obtain a good starting point for the
subsequent full-scale minimax optimization, which results in the
multiplexer responses shown in Fig. 8.

CONCLUSIONS

We have introduced the concept and some applications of
the Huber method to microwave circuit CAD. This novel
concept is consistent with practical engineering intuition and will
have a far-reaching and profound impact on modeling, design,
design validation, fault diagnosis and statistical processing of
circuits and devices. We have presented strong evidence in a
number of application areas, and without doubt we will find the
Huber optimization of significant benefit inother areas as well.
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8. Multiplexer responses after minimax optimization with
the full set of 75 variables, showing the common port
return loss (— ) and the individual channel insertion
losses (------).
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